Utility Mining across Multi-Sequences with Individualized Thresholds
نویسندگان
چکیده
منابع مشابه
High-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds
High-utility sequential pattern mining is an emerging topic in recent decades and most algorithms were designed to identify the complete set of high-utility sequential patterns under the single minimum utility threshold. In this paper, we first propose a novel framework called high-utility sequential pattern mining with multiple minimum utility thresholds to mine high utility sequential pattern...
متن کاملHigh Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملMining Complex Patterns across Sequences with Gap Requirements
The recurring appearance of sequential patterns, when confined by the predefined gap requirements, often implies strong temporal correlations or trends among pattern elements. In this paper, we study the problem of mining a set of gap constrained sequential patterns across multiple sequences. Given a set of sequences S1, S2,., SK constituting a single hypersequence S, we aim to find recurring p...
متن کاملData Mining with Linguistic Thresholds
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. In the past, the minimum supports and minimum confidences were set at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural and understandable for human beings. This paper thus attempts to propose a new mining approac...
متن کاملEfficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds
High average-utility itemsets mining (HAUIM) is a key data mining task, which aims at discovering high average-utility itemsets (HAUIs) by taking itemset length into account in transactional databases. Most of these algorithms only consider a single minimum utility threshold for identifying the HAUIs. In this paper, we address this issue by introducing the task of mining HAUIs with multiple min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM/IMS Transactions on Data Science
سال: 2020
ISSN: 2691-1922
DOI: 10.1145/3362070